AC3PXXX-07/P3 Series Current Sensor

The AC3PXXX-07/P3 current sensor series is a tri-phase transducer, specially designed for low voltage, high current measurement in automotive applications. It provides solutions with faster speed and higher performance-price ratio for DC, AC or pulse currents measurement, with galvanic isolation techniques used to separate the primary and secondary circuits.

Features

- Perfect fit to "HybridPACK *** drive Infineon
- All in one tri-phase transducer (optional with 2 phase and 3 phase measurement)
- Unipolar 5 V DC power supply (3.3V available)
- Analog signal output
- Primary measuring current up to 1200 A
- Ambient operating temperature range: -40°C ...125°C
- Typical step response <4µs

Advantages

- High accuracy sensor in automotive applications
- Fast response
- No insertion losses
- Small, thin, high performance-price ratio
- High frequency bandwith

Automotive applications

- Starter generators
- Inverters
- HEV applications
- EV applications
- DC / DC converter

Standards

- IEC 60068-2 Series
- IEC 61000-4 Series
- IEC 60664-1 Series

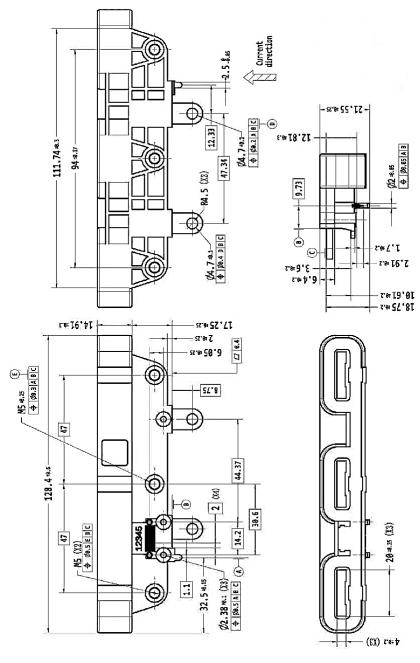
Absolute maximum ratings

Symbol	Parameter	Rating	Unit
V _{DD Max} .	Maximum supply voltage (not destructive)	8	V
$\mathbf{I}_{\mathbf{c}}$	Current consumption	18	mA
\mathbf{I}_{out}	Output current	±40	mA
T _n	Ambient operating temperature	-40 to 125	°C
T _s	Storage temperature range	-40 to 125	°C
$V_{\text{ESD-HBM}}$	ESD sensitivity HBM (Human Body Model)	4	KV
$V_{\scriptscriptstyle D}$	Insulation voltage for isolation	2.5	KV
D-CRD	Creepage distance	13.6	mm
D-CLE	Clearance	12	mm
СТІ	СТІ	PLC3	

Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade reliability.

Specifications ($T_A = 25^{\circ}C$, $V_{DD} = 5.0V$)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage		4.75	5	5.25	V
\mathbf{I}_{pn}	Current nominal measuring range	AC3P800-07/P3	-800		800	
		AC3P900-07/P3	-900		900	
		AC3P1000-07/P3	-1000		1000	А
		AC3P 1100-07/P3	-1100		1100	
		AC3P1200-07/P3	-1200		1200	
V _{out}	Output voltage	$\pm I_{P\Pi}$	$V_{\text{OUT=}}V_{\text{DD}}/2+(2\times I_{\text{p}}/I_{\text{ph}})$		V	
	G (customized available)	AC3P800-07/P3	2.5			
G		AC3P900-07/P3	2.22			mV/A
		AC3P1000-07/P3	2			
		AC3P1100-07/P3	1.82			
		AC3P1200-07/P3	1.67			


Specifications (T_A= 25°C, V_{DD}= 5.0V)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
RL	Output load resistance	V _{out} to GND	5			kΩ
C _L	Output load capacitance	V _{out} to GND			10	nF
V _o	Zero current output	I _P =0A @T _A =25°C		V _{DD} /2		V
ε _c	Sensitivity error	V _{DD} =5V @T _A =25°C	-1	±0.5	1	%
V _{oε}	Offset voltage	I _P =0A @T _A =25°C	-6	±5	6	mV
V _{om}	Magnetic offset voltage	I _P =0A @T _A =25°C, after excursion of I _{Pn}		±2		mV
T _{CVOE}	Temperature coefficient of V_{OE}	T _A =-40°C125°C		±0.18		mV/°C
T _{CVOUT}	Temperature coefficient of V _{OUT}	T _A =-40°C125°C		±0.03		%/°C
٤	Non-linearity error	$\pm I_{Ph}$ without offset	-1		1	%/I _{PN}
вw	Frequency bandwidth (-3dB)			120		kHz
T _R	Step response to 90% $\rm I_{PN}$	(Design target)		4		μs

General characteristics

Symbol	Parameter	Value	Unit	Comment
т-нѕє	Housing material	PBT		Flame retardant UL 94
т-срт	Conductor material	H62		$0.3 m\Omega$ before welding on PCB
m-fc	Flux collector material	FeSi wound core		Superior magnetic permeability
m	Mass	128	grams	

Dimension (mm)

Pin	Symbol
1	V_{DD}
2	GND
3	V _{out} 1
4	V _{out} 2
5	V _{out} 3

Name Guide Description

Notes

The content of this document is subject to revision without notice. Luksens shall have no liability for any error or damage of any kind resulting from the use of this document.

Safety and Environment

The product is to be installed by manufacturer trained personnel or competent person trained in accordance with manufacturer installation instructions.

With respect to applicable standards IEC 61010-1/EN 61010-1 safety requirements for electrical equipment for measurement, control and laboratory use part 1 general requirements, the product should be used in limited energy secondary circuits.

Risk of electrical shock

Certain parts of the module can carry hazardous voltage during the operation process of the product because hazardous live voltage of primary conductor, power supply occurs, injury and/or serious damage will be caused if this warning is ignored.

Conducting parts must be inaccessible after installation of the product. Additional protection including shield or protective housing could be used according to IEC 60664 Insulation coordination for equipment within low-voltage supply systems.

Disconnection of the main supply will protect against possible injury and serious damage.

ESD protection

Damage from an ESD event will occur if the personnel is not well grounded when handling.

Important notice

Luksens reserves the right to make changes to or discontinue any product or service identified in this publication without notice. Luksens advises its customers to obtain the latest version of the relevant information to verify, before placing any orders. The information included herein is believed to be accurate and reliable. However, since additional design, measure, production, quality control take effect in the end product, therefore Luksens shall have no liability for any potential hazards, damages, injuries or less of life resulting from the end product.

Luksens products are not to be used in any equipment or system, including but not limited to life support equipment or systems, where failure of Luksens products may cause bodily harm.